Early Life Microbiota, Neonatal Immune Maturation and Hematopoiesis

نویسندگان

  • Matilde Bylov Kristensen
  • Hanne Frøkiær
  • Tine Rask
  • Tine Rask Licht
  • Stine Broeng Metzdorff
  • Lisbeth Nielsen
چکیده

Emerging epidemiologic data supports the hypothesis that early life colonization is a key player in development of a balanced immune system. Events in early life, as birth mode and infant diet, are shown to influence development of immune related diseases, like asthma, diabetes and inflammatory bowl disease, later in life. The intestinal epithelium makes up a physical and biochemical barrier between the bacteria in the gut lumen and the immune cells in the submocusal tissue. This monolayer of intestinal epithelial cells (IEC) makes up an extremely large surface and is highly important for the synergistic coexistence between trillions of bacteria in the gastrointestinal tract and their mammalian hosts. The IEC actively communicate with the microbiota of the gut lumen and tolerance establishment in the intestine is induced as a result of a balanced and controlled communication between IEC and the commensals in the gut. Hematopoietic stem cells from the fetal liver seed the fetal spleen and bone marrow in perinatal phase. Granulocytosis in neonate mice and man just after birth is a natural event of early life hematopoiesis and likely contributes to elevated counts of neutrophil-like cells in the peripheral blood of newborns. Granular myeloid derived suppressor cells (MDSC) have recently been described in human cord blood. MDSC are potential immunosuppressive cells often described in cancer, inflammation and during sepsis. They evolve from immature myeloid cells during hematopoiesis. Several recent studies show a role for various myeloid derived and immune suppressive cellular subsets in the newborn. In the present work we showed the presence of a prominent group of CD11bGr-1 cells in the neonate murine spleen. The presence of these cells were dependent on the colonizing microbiota, as germfree neonate mice held notably fewer of these cells in the spleen. Microscopy of spleens and livers indicated that these cells derived from hematopoietic tissue in the liver of the neonate mouse, and that mobilization and activation of the hematopoietic tissue is promoted by the presence of colonizing microbes. The regulation of epithelial barrier integrity was influenced by the nature of the microbiota, as expression of tight junction (TJ) protein encoding genes showed a faster and more tightly regulated rate in the murine ileum of conventionally colonized mice compared to the GF ileum. The conventional microbiota furthermore promotes the expression of genes involved in mucin secretion, TLR signaling pathways and cytokine production in the intestine, while downregulating genes encoding chemokines in the epithelial tissue. Newly published studies indicate that the prominent CD11bGr-1 cell group may have a role in early life immune regulation. This is however not proven by the data of present study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immune maturation and lymphocyte characteristics in relation to early gut bacteria exposure

2 All previously published papers and figures were reproduced with permission from the publishers. 3 " Always remember that, no matter how overwhelmed you feel about your own life, bigger and more significant events are relentlessly occurring in the world " Unknown 4 At birth, the immune system is immature and the gut microbiota influences immune maturation. Staphylococcus aureus (S. aureus) an...

متن کامل

The Neonatal Window of Opportunity: Setting the Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis.

The existence of a neonatal window was first highlighted by epidemiological studies that revealed the particular importance of this early time in life for the susceptibility to immune-mediated diseases in humans. Recently, the first animal studies emerged that present examples of early-life exposure-triggered persisting immune events, allowing a detailed analysis of the factors that define this...

متن کامل

Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initi...

متن کامل

Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoies...

متن کامل

Microbial Composition of the Initial Colonization of Newborns.

Early-life interaction with indigenous intestinal microbes is a prerequisite for healthy immune and metabolic maturation. Human infants acquire their gut microbiota predominantly from the mother. A considerable inoculum of microbes is received by the neonate during vaginal delivery. Recent observations suggest that human gut colonization may be initiated prenatally by microbes in amniotic fluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014